
Machine Learning on Microcontrollers

Lorenz Graf

B A C H E L O R A R B E I T
Nr. 1510237007

eingereicht am
Fachhochschul-Bachelorstudiengang

Mobile Computing

in Hagenberg

im Juni 2017

This thesis was created as part of the course

Hardwarenahe Programmierung

during

Summer Semester 2017

Advisor:

FH-Prof. DI Stephan Selinger

ii

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 23, 2017

Lorenz Graf

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 1
1.3 Outline . 1

2 Machine Learning Basics 2
2.1 Classification . 2
2.2 Iris . 2
2.3 Anaconda . 2

3 C++/C Machine Learning Libraries 8
3.1 Shark - Machine Learning Library . 8
3.2 Alternative Approach . 9

4 Decision Tree ID3 10
4.1 Functionality . 10
4.2 Implementation . 10
4.3 Conclusion . 10

5 Decision Tree J48 12
5.1 Weka . 12
5.2 Preprocess Setup . 12
5.3 Classification . 12

6 Process Generated Tree 14
6.1 W2C Converter . 14

6.1.1 Structure . 14
6.1.2 Node . 15
6.1.3 Main . 15

6.2 W2C Converter Usage . 16
6.3 Function Based C Code . 17

iv

Contents v

6.4 Node Based C Code . 17
6.5 Additional Features . 18

6.5.1 MSP432 Ready . 18
6.5.2 Result Table . 18

7 Classification on MCU 20
7.1 Code Composer Studio . 20

7.1.1 Project Setup . 20
7.1.2 Configure Project . 20
7.1.3 Implementing C Code . 21
7.1.4 Classification Data . 21

7.2 Evaluating Results . 21

8 Conclusion 22

A Source Code 23
A.1 Python Analytics Code . 23
A.2 Generated Function Based C Code . 25
A.3 Generated Node Based C Code . 26

References 28
Literature . 28
Films and audio-visual media . 28
Online sources . 28

Abstract

This thesis deals with the topic of implementing basic machine learning, explains the
problems that may occur and presents a solution to fix said problems.

Even though this thesis and its contents are targeted at a specific MCU it should
be noted that all of its contents can be translated to any MCU.

One of the biggest problems is the way that current machine learning libraries be-
have, as they for example utilize dynamic memory allocation. These problems and their
origins are also analyzed in detail.

The earlier mentioned problems are prevented by using a java program that was
developed as a part of this thesis. It converts textual description of a specific machine
learning process and parses it into c code. This code can then be used on any MCU that
supports this language. In addition to solving the problems that occur when performing
machine learning on MCUs the java software provides two different solutions to solving
the given machine learning problem. One of these uses mainly flash memory, the other
one ram. By doing so the more restricted resources availability can be maximized.

To prove the concept of the java application it was tested on one of the most common
machine learning test sets that is analyzed in detail beforehand. The process is explained
step by step so that the reader can reproduce the entire process.

vi

Kurzfassung

Diese Arbeit befasst sich mit der Implementierung grundliegender Machine Learning
Algorithmen, zeigt die Probleme, die dabei auftreten können und stellt eine mögliche
Lösung vor, die diesen Probleme vorbeugt.

Obwohl sich diese Arbeit an einer bestimmten MCU orientiert, kann das Konzept
auf jegliche MCUs übertragen werden.

Eines der größten Probleme ist die Art der Implementierung, die von Machine Lear-
ning Libraries vorgewiesen wird. Dabei stellt vor allem die Benützung von dynamischer
Speicherallocierung ein Problem dar. Dieses und ähnliche Probleme werden in der Arbeit
genau analysiert.

Den zuvor genannten Problemen wird hier durch die Verwendung eines Java Pro-
gramms vorgebeugt, das als Teil dieser Arbeit entwickelt wurde. Es konvertiert eine
textuelle Beschreibung eines bestimmten Machine Learning Prozesses und wandelt die-
se in C Code um. Dieser Code kann daraufhin auf sämtlichen MCUs verwendet werden,
die diese Programmiersprache unterstützen. Zusätzlich zur Lösung der Probleme, die
bei der Implementierung von Machine Learning auf MCUs auftreten können, stellt das
Java Programm zwei verschiedene Lösungen zur Verfügung. Eine davon verwendet in
erster Linie des statischen Flashspeicher, die andere hauptsächlich den RAM der MCU.
Anhand den beiden Implementierungen kann die Verfügbarkeit der am stärksten be-
grenzten Resource auf der MCU maximiert werden.

Um das Konzept zu belegen, wurde die Java Applikation anhand einer der meist
verwendetsten Machine Learning Datensätze, der in dieser Arbeit zuvor genau analysiert
wird, getestet. Der Prozess wird Schritt für Schritt erklärt, so dass die Ergebnisse der
Arbeit reproduziert werden können.

vii

Chapter 1

Introduction

1.1 Motivation
This bachelor thesis answers the question if basic machine learning algorithms can be
run on an MCU within reasonable effort and how much sense it makes to do so. What
are the advantages and disadvantages? What problems must be faced when planning to
implement machine learning on an MCU?

1.2 Problem statement
The characteristics of an MCU are that it is a tiny computer consisting of a single
integrated circuit. Even though these SoCs (systems on a chip) are very compact they
might still be utilizing multiple different modules, such as multiple cores for example.
Hence the resources that such a device can provide are very limited which does more
often than not conflict with the very resource heavy process of machine learning.

1.3 Outline
This thesis will tackle the possible risks of running machine learning code on such limited
resource enviorments and explains how to still perform such tasks in several different
ways. The two main approaches explained in this document will be to limit the code
to use nearly explicitly either random access memory or flash storage. By doing so the
required resources can be prioritized around the embedding code of the machine learning
process.

In detail this thesis is about decision trees, more specificly ID3 (chapter 4) and J48
(chapter 5). The reason for this is that they are simple and easy to understand and
to follow their classification process. However the contents of this document can be
projected to any machine learning algorithm.

The target MCU that this thesis will focus on is the MSP432P401R[4] in combination
with the Integrated Development Enviorment (IDE) Code Composer Studio[8].

1

Chapter 2

Machine Learning Basics

2.1 Classification
The target of this machine learning process is to classify given characteristics to one
of multiple types. This includes calculating the weight that the different characteristics
have on the outcome of the classification and if a characacteristic is even used to classify
the object in the first place.

There are many possible ways to perform machine learning and the following process
of classification, but this thesis will be concentrated around the ID3 and J48 tree process.
These two ways of machine learning and classification are described further down the
line (chapter 4 and 5).

2.2 Iris
The iris dataset is one of the most used machine learning datasets and therefore a good
example set for the purpose of testing machine learning on a micro controller. The set
provides information about three different types of flowers (iris setosa, iris versicolour
and iris virginica) and their four characteristics (sepal length, sepal width, petal length
and petal width). The dataset is analysed in more detail at 2.3. In this case the dataset
consists of a total of 150 data lines which are divided equally by three for the classes.
Hence every class is described by 50 characteristic data lines.

The iris dataset that is used is provided by the UCI [2] machine learning database
and downloaded from the Weka [7] homepage since it is already prepared to be used
with the Weka tool which is used in combination with the 2.3 python library to analyse
the given dataset.

2.3 Anaconda
Anaconda is the leading open data science platform powered by Python. The open source
version of Anaconda is a high performance distribution of Python and R and includes
over 100 of the most popular Python, R and Scala packages for data science. [9]

2

2. Machine Learning Basics 3

After downloading and installing anaconda the functionality of all the needed li-
braries can be tested by running the following code [10].

1 # Check the versions of libraries
2 # Python version
3 import sys
4 print('Python: {}'.format(sys.version))
5 # scipy
6 import scipy
7 print('scipy: {}'.format(scipy.__version__))
8 # numpy
9 import numpy

10 print('numpy: {}'.format(numpy.__version__))
11 # matplotlib
12 import matplotlib
13 print('matplotlib: {}'.format(matplotlib.__version__))
14 # pandas
15 import pandas
16 print('pandas: {}'.format(pandas.__version__))
17 # scikit−learn
18 import sklearn
19 print('sklearn: {}'.format(sklearn.__version__))

Using the Anaconda python library the analytic results of the python code (appendix
A.1) reveal the following information about the iris dataset.

At first lets take a look at some sample data, also called head data since it resembles
the first few entries of a dataset.

Figure 2.1: Data head of the iris dataset

In figure 2.1 we can see the characteristics identifier, starting with zero and being
incremented with each additional value. Since the first twenty lines of data are shown we

2. Machine Learning Basics 4

see the identifier zero to nineteen. We also get an overview of what margins the values of
the characteristics (sepal-length, sepal-width, petal-length and petal-width) have. The
last coloumn represents the class that the characteristics in the line are describing. Since
the dataset is sorted by class all of the head data shows characteristical information
about the iris setosa class.

Figure 2.2: Detailed information about the iris dataset

Figure 2.2, a sceenshot of the anaconda dataset analysis, provides an overview of
not only the first twenty, but the entire dataset. The information that is shown here
contains the following information about every given characteristic but not the classes.

1. count - Count of data lines that contain the given information.
2. mean - The average value of the characteristic calculated over the entire dataset.
3. min - The minimum value of the characteristic in the entire dataset.
4. 25% - First quartile
5. 50% - Second quartile
6. 75% - Third quartile
7. max - The maximum value of the characteristic in the entire dataset.

Figure 2.3: Iris classes and their quantities

Figure 2.3 gives an overview of the available classes (Iris-setosa, Iris-versicolor and
Iris-virginica) and what amount of classification data is provided in the dataset for each
of these classes. This dataset contains 50 data lines for each class which leads to a total
of 150 lines of classification data.

To provide some more information about the datasets three figures (2.6, 2.7 and 2.8)
were generated that describe the used data.

In figure 2.4 a few machine learning procedures are performed and tested using
the given dataset. We can see the accuaricy of the different algorithms ranging from 0
(classified none of the given data correctly) to 1 (classified all of the given data correctly).

2. Machine Learning Basics 5

Figure 2.4: Machine learning results for different algorithms using the iris dataset

The algorithms perform well for our use case given the amount of data that was
provided to them. The different machine learning procedures used are listed below.

1. LR - Logistic Regression
2. LDA - Linear Discriminant Analysis
3. KNN - KNeighbors Classifier
4. CART - Decision Tree Classifier
5. NB - GaussianNB
6. SVM - Support Vector Machine
To provide some further insight into the performance of the different algorithms a

graphical representation in form of a box diagram (figure 2.5) was genenerated.

Figure 2.5: Box diagram showing perfomance of different machine learning algorithms

2. Machine Learning Basics 6

Figure 2.6: Box diagram of the iris data distribution

Figure 2.7: Histogram of the iris data distribution

2. Machine Learning Basics 7

Figure 2.8: Scatter diagram of the iris data distribution

Chapter 3

C++/C Machine Learning Libraries

There are a lot of machine learning tools out there but only a few of them are pro-
grammed to work with C++/C. By using open source collections of massive amounts of
machine learening libraries [3] a more precise selection of what libraries fit the purpose
and the needs of this project can be formed.

3.1 Shark - Machine Learning Library

The top C++/C machine learning library that is used for most projects in these lan-
guages is the Shark - Machine Learning [1] library. Its feature list contains a lot of
different supervised learning, like LDA and SVM, as well as unsupervised learning,
like prinzipal component analysis and hierarchical clustering. Furthermore it supports
evolutionary algorithms and basic linear algebra and optimization algorithms.

After selecting a library the setup process starts. The dependencies of CMake [6]
and the boost binaries [5] have to be met before starting the actual installation process.
Now that this is figured out it is time to install the actual library. To do so download
the files needed from the shark [1] homepage on which the information in Figure 3.1 is
shown.

Since the target operating system was set to Microsoft Windows, so that most other
students and professors can reproduce the machine learning process, this was a problem.
This error was not resolved in the next few days so a previous version of shark had to
be used.

After installing all necessary dependencies and the machine learning library itself
another problem occured. The dynamic memory allocation that provides a lot of agility

Figure 3.1: Shark Windows build failed

8

3. C++/C Machine Learning Libraries 9

on personal computers and similiar machines does not work well on MCUs. The reasons
for this are the very limited amount of memory available on such devices and the
fragmentation problem that occurs over long time performance on embedded systems.
Futhermore systems like the target one is usually programmed to perform one task so
there is no use for reallocating and reusing memory. Also memory allocation comes at
a high cost of performance in terms of processing speed.

3.2 Alternative Approach
Since most machine learning libraries use dynamic memory allocation they are not
suitable for the process of performing classification of the iris problem on an MCU.
Therefore a different, more static, approach is needed to solve this task. The new target
of the thesis is to develop a program that generates very performant C code that is
specially designed and generated for a specific machine learning problem, as for example
the iris problem. For simplicity the program creates a decision tree since in section 2.3
the results for such trees are acceptable for the selected use case.

Chapter 4

Decision Tree ID3

4.1 Functionality

The Iterative Dichotomiser 3 (ID3) algorithm generates a decision tree from a data set
as for example the iris data set that is used in this case. Its most common domains are
machine learning and natural language processing. After being trained with a given set
of data it is used to classify future samples. It therefore meets the requirements to solve
the iris problem.

4.2 Implementation

The source code of the implementation [11] used was originally coded and commented
in italian and had to be translated entirely before taking further steps.

4.3 Conclusion
After the code was translated and tested the results were pretty accurate. The only
problem was that this implementation still uses dynamic memory allocation which hin-
dered perfect performance on the MCU and given certain data sets still tried allocating
more memory than the 64K that were availabe on the MSP432 MCU [4]. Furthermore
decision trees such as the ID3 are more likely to face the problem of data over-fitting.
When this happens the algorithm splits the data until only pure sets are available. To
fix this problem J48 (chapter 5) is used instead of ID3.

10

4. Decision Tree ID3 11

Figure 4.1: Example of an ID3 decision tree [12]

Chapter 5

Decision Tree J48

The J48, as well as the ID3, is used to classify data after being trained with a fixed data
set. The J48 algorithm is an open source implementation of the C4.5 algorithm from
the Weka data mining tool [7]. C4.5 is an extension of the ID3 algorithm mentioned in
chapter 4.

5.1 Weka
Using Weka a J48 decision tree can quickly be trained and used to classify data inside
the data mining tool. The challenge is to extract the information about the decision tree
into performant, optimised C code that can run on an MCU like the used MSP432[4].

5.2 Preprocess Setup
Starting the Weka application prompts the user with a dialog on which the action
"Explorer" is selected. This reveals the actual window that is used to create the J48
decision tree.

In the "Preprocess" tab select "Open file" and select the iris dataset provided by
the UCI[2]. The content of the tab now shows the characteristics that are contained in
the dataset file and a few informations about the dataset such as minimum, maximum,
mean and standard deviation. It also shows a graph that represents the distribution of
the characteristics. A visual representation of what the user should see at this moment
is provided in figure 5.1.

5.3 Classification

To generate a J48 decision tree switch to the "Classify" tab and choose the "trees/J48"
classifier. Select the "More options..." button and enable the "Output source code" for
the "WekaClassifier" since it will give further insight into how the C code should look
like. Furthermore to provide a mental cross link between the generated C code and the
Weka generated Java code the unique function identifiers are also used in the C code.

The decision tree is now ready to be trained by the weka tool. Simply hit start and
watch the flightless weka bird do a belly flop when the training process is finished.

12

5. Decision Tree J48 13

Figure 5.1: Weka Preprocess tab screenshot

A lot of data can now be seen in the "Classifier output" field. Amongst other things
it contains the amount of data used to train the tree, the trees structure, its attributes
and classes and the previously enabled java code. This textual representation of the
decision tree is very informative, but not easy to see at the first glance how data will
be processed during classification.

To get a better, visual representation of what the tree looks like, how it works and
how it is going to process classification data select the result element in the "Result
list" container. Right click the item and choose the "Visualize tree" option. The now
generated diagram represents the J48 decision tree in a form that can be understood
more easily compared to the textual description from before. Using the iris dataset the
generated decision tree visualization should look similar to figure 5.2.

The training process is now finished and the J48 decision tree is ready to be used
for classification of data sets.

Figure 5.2: Weka result for the J48 decision tree

Chapter 6

Process Generated Tree

Having now trained a fully functional J48 decision tree the next task is to process the
newly aquired information into generating C code out of it that can be run on the chosen
MCU, the MSP432.

To accomplish this target the information that is created by the weka data mining
tool has to be read and parsed by another program. This program then generates two C
main files that solve the same problem, but use different implementations. The program
is called "W2C Converter" (Weka-to-C Converter). A screenshot of this program can be
seen in figure 6.3. This screenshot can be used through out this chapter to get a better
impression on how the application has to be operated.

6.1 W2C Converter
The programming language of choice is java since it provides a lot of versatility and
simplicity. There are no additional libraries or other kind of sources needed to compile
this program.

To further understand the working process lets split it up into subsections that are
each explained individually.

6.1.1 Structure
First of all let us look at the structure that the software is built upon. Its basic compo-
nents are the Main-, Node- and SampleData classes. These all work together to accom-
plish the successfull conversion of the textual weka J48 tree defintion to the function
based 6.3 and node based 6.4 c-codes. Figure 6.1 shows the class diagram of the appli-
cation. In short the functionality of each of those classes is as follows.

• Node class is used as a data container.
• Main class performs the conversion.
• SampleData class provides fast debugging and assists in delimitation of several

values. This class will therefore not be described in more detail since it majorly
helped in the developing process and is not a critical component of the final
software product.

14

6. Process Generated Tree 15

Figure 6.1: Class diagram of the W2C Converter

6.1.2 Node
The node class is really the critical factor since it has to be modelled to fit result values,
forwarding links and synonyms into one data model. To accompish the functionality of
the parser the node therefore contains two result codes (if the condition is met and if it
isnt), a compare and param value that defines with which value has to be compared to
decide on further forwarding and three synonym strings (own, condition met and not
met).

The strings that are reffered to as synonyms are used to name either the functions or
the structs and therefore fullfill two major requirements. First, the individuality of each
nodes reference is provided (preventing ambiguous calls) and second, every single step
the final c code product takes can be referred back to the textual weka tree definition.

6.1.3 Main
Now that the data structure behind the process is clear the data extraction can be
explained in further detail. The process is split up and explained step by step in the
following enumeration.

1. Reading the leaf count provided by the textual weka j48 decision tree desribtion.
This variable is used to know the exact amount of iterations that have to be taken
until the software detected every node.

2. The converter now iterates over the entire file allocating memory for each node
found. During the same iteration process all node data is extrated. This behaviour
allows the program to use a single iteration for any code, so no exponantial scaling
will appear on bigger textual weka tree descriptors.

3. When allocating memory the software automatically extracts the name of the
current node and stores it in the own synonym variable.

4. Extracting the if- and else results that determine as what the current data line
provided currently is classified as. If there is no more forwarding this is the final
result the classification tree returns. In the same step, if a forwarding node is
found a reference to it will be stored in the forwarding synonym variables.

6. Process Generated Tree 16

5. Now that the enviormental forwarding is prepared the actual comparison data
that makes the tree decide which branch to follow next is extracted and stored in
the compare and param values.

Now all critical data is extracted from the textual weka decision tree descriptor.
This enables the actual process of printing c code. To get a better overview of the work
the W2C Converter performs take a look at figure 6.2.

Figure 6.2: Flow diagram of the W2C Converter

6.2 W2C Converter Usage
The W2C Converter provides the user with a basic list of instructions that, if followed
correctly, lead to the successful generation of two C code main files. Their differences
are described in further detail in sections 6.3 and 6.4. If the previous steps from chapter
5 were followed no further steps need to be taken in the weka data mining tool. Simply
change focus of the weka explorer to the "Classifier output" text field by left clicking once
inside it. Then, using the command "Select everything" (Ctrl+A) we can copy (Ctrl+C)
the entire classifier output text and paste (Ctrl+V) it into the W2C Converters "Weka
output" field.

6. Process Generated Tree 17

6.3 Function Based C Code
First lets take a look at the implementation that utilizes functions to solve the problem.
It generates a function for each leaf in the decision tree that contains an if-else clause to
decide on which function to forward the data to. This C implementation of a decision
tree focuses mainly on the usage of the flash memory that an MCU usually has got more
of compared to RAM. The only two memory allocations in the generated C main file
are for the classification result and the test dataset itself. This code is very comparable
to the java code generated by the Weka data mining tool except in C function headers
are required to cross access the different function nodes if needed.
An example node that was taken from the iris data test set looks like this (comments
were added after code generation for comprehensibility):

1 int Nd8409be2(double i[]) // Unique node synonym
2 {
3 int p = -1; // Init result as −1 in case of error
4 if (i[2] <= 4.9) // Parameter index and compare value
5 {
6 p = 1; // Successful classification to class 1 (check result table)
7 }
8 else
9 {

10 p = N5e2faa8d3(i); // Forwarding classification process to the next node
11 }
12 return p; // Returns classified result code
13 }

6.4 Node Based C Code
The other implementation of the decision tree uses Node structs that contain the pa-
rameters index which they are comparing to the also contained compare value. Based on
wether the parameter is higher or lower than the compare value a check function either
forwards the classification request to a different node that is processed recursively also
in the check function or returns a finished classification value.

If an error occurs during the classification process the classification result will be
-1 signaling the user that the classification was not successful and enabling the simple
usage of "if(result)" to check for errors.

The node struct that is required for this kind of computation looks like this (com-
ments were added after code generation for comprehensibility):

1 struct Node // Struct name
2 {
3 int param; // Parameter index
4 double comp; // Compare value
5 int ifResult; // Successful classification (class value , check result table)
6 int elseResult;
7 struct Node* ifNode; // Forwarding classification process to the next node
8 struct Node* elseNode;
9 };

A generated sample node from the iris data test set would therefore by definition
look like this:

6. Process Generated Tree 18

1 struct Node N2a8166703 = { .param = 3, .comp = 1.5, .ifResult = 2, .elseResult = 1,
.ifNode = 0, .elseNode = 0 };

The previously mentioned check function will always look like this:
1 int check(double i[], struct Node* node)
2 {
3 if (i[node->param] <= node->comp)
4 {
5 return node->ifResult >= 0 ? node->ifResult : check(i, node->ifNode);
6 }
7 else
8 {
9 return node->elseResult >= 0 ? node->elseResult : check(i, node->elseNode);

10 }
11 }

6.5 Additional Features
All that has to be done now is to copy any one of the generated C codes and paste them
into an MSP432 project as described in 7.

6.5.1 MSP432 Ready
Both of the generated codes already include the msp header file and stop the watchdog
timer in the main function. The generated codes even contain some iris characteristic
sample data that can be uncommented to immediatly compile and test the application.

6.5.2 Result Table
Furthermore both generated codes provide the a comment section containing all possible
classification outcomes and their corresponding values. For the iris dataset this comment
section looks as follows:

1 /∗∗
2 ∗ RESULT TABLE:
3 ∗ 0 − setosa
4 ∗ 1 − versicolor
5 ∗ 2 − virginica
6 ∗/

6. Process Generated Tree 19

Figure 6.3: Screenshot of the W2C Converter

Chapter 7

Classification on MCU

To use the decision tree C code that was generated by the W2C Converter simply copy
and paste the corresponding text fields content into a C main file. After saving the
file and making sure that all dependencies, such as header files and compilers, are met
the file can be compiled to machine code. Make sure to load the program onto the
development board or chip that is used.

A different, more simple approach to compiling and loading the decision tree code
is explained in section 7.1.

7.1 Code Composer Studio

Compiling and loading can be done for example using the Code Composer Studio[8]
which integrates the libraries and compilers required to develop an application for the
MSP432.

7.1.1 Project Setup
First, create a new project by selecting "File > New > CCS Project".

Configure the Code Composer Studio setup wizard to match the target development
board. In this case an MSP432P401R is used and therefore the configuration should be
as seen in figure 7.1.

Figure 7.1: Code Composer Studio target setup for MSP432

7.1.2 Configure Project
After making sure a wired usb connection is established between the computer and
the target development board check its functionality using the "Verfiy..." button in the
connection row of the project setup wizard.

20

7. Classification on MCU 21

After giving the project a name it is ready to be created and loaded inside the project
explorer bar.

7.1.3 Implementing C Code
Open the main.c file that is located in the root folder of the project and replace its
entire content by overwriting it with one of the two generated C codes mentioned in
chapter 6 in sections 6.3 and 6.4.

7.1.4 Classification Data
If required uncomment the example iris data test values to immediatly be able to build
the project using the hammer button in the Code Composer Studio IDE as described
in section 6.5.

Any given set of data that might be classified by the generated decision tree C
code, as well as other functionalities like bluetooth connectivity (etc.) may now be
implemented into the code.

After successfully building the project the code may now be run or debugged on the
development board.

7.2 Evaluating Results
The classification of characterisic, added or modified in section 7.1.4, is either performed
by calling the root function for the function based solution or calling the check function
using the root node as parameter for the node based solution.

Evaluation can be performed by comparing the result of the classification with the
automatically generated result table mentioned in section 6.5.2.

Chapter 8

Conclusion

Even though the resources provided by MCUs are not meant to perform machine learn-
ing tasks 1.2 it is most certainly possible. If done corretly the machine learning process
is very performant and consistent.

Machine learning libraries, such as shark 3.1, are most likely not the best way to
perform classification or similar machine learning processes on an MCU. This can be
lead back mostly to the usage of dynamic memory allocation 3.1 which causes several
problems in the enviorment of an MCU.

By creating a program that uses information about a previously trained decision
tree 5 as input and outputs code that is compatible with the target MCU, such as the
W2C Converter 6.1, the effort of using MCUs for classification shrinks to a minimum.

Doing so combines the high consistency of embedded systems with the versatility of
general computing machines like a personal computer or a mac.

22

Appendix A

Source Code

A.1 Python Analytics Code

1 # Load libraries
2 import pandas
3 from pandas.tools.plotting import scatter_matrix
4 import matplotlib.pyplot as plt
5 from sklearn import model_selection
6 from sklearn.metrics import classification_report
7 from sklearn.metrics import confusion_matrix
8 from sklearn.metrics import accuracy_score
9 from sklearn.linear_model import LogisticRegression

10 from sklearn.tree import DecisionTreeClassifier
11 from sklearn.neighbors import KNeighborsClassifier
12 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
13 from sklearn.naive_bayes import GaussianNB
14 from sklearn.svm import SVC
15
16 # Load dataset
17 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
18 names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
19 dataset = pandas.read_csv(url, names=names)
20
21 # shape
22 print(dataset.shape)
23
24 # head
25 print(dataset.head(20))
26
27 # descriptions
28 print(dataset.describe())
29
30 # class distribution
31 print(dataset.groupby('class').size())
32
33 # box and whisker plots
34 dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
35 plt.show()
36
37 # histograms

23

A. Source Code 24

38 dataset.hist()
39 plt.show()
40
41 # scatter plot matrix
42 scatter_matrix(dataset)
43 plt.show()
44
45 # Split−out validation dataset
46 array = dataset.values
47 X = array[:,0:4]
48 Y = array[:,4]
49 validation_size = 0.20
50 seed = 7
51 X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y

, test_size=validation_size, random_state=seed)
52 # Test options and evaluation metric
53 seed = 7
54 scoring = 'accuracy'
55
56 # Spot Check Algorithms
57 models = []
58 models.append(('LR', LogisticRegression()))
59 models.append(('LDA', LinearDiscriminantAnalysis()))
60 models.append(('KNN', KNeighborsClassifier()))
61 models.append(('CART', DecisionTreeClassifier()))
62 models.append(('NB', GaussianNB()))
63 models.append(('SVM', SVC()))
64
65 # evaluate each model in turn
66 results = []
67 names = []
68 for name, model in models:
69 kfold = model_selection.KFold(n_splits=10, random_state=seed)
70 cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold,

scoring=scoring)
71 results.append(cv_results)
72 names.append(name)
73 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
74 print(msg)
75
76 # Compare Algorithms
77 fig = plt.figure()
78 fig.suptitle('Algorithm Comparison')
79 ax = fig.add_subplot(111)
80 plt.boxplot(results)
81 ax.set_xticklabels(names)
82 plt.show()
83
84 # Make predictions on validation dataset
85 NB = GaussianNB()
86 NB.fit(X_train, Y_train)
87 predictions = NB.predict(X_validation)
88 print(accuracy_score(Y_validation, predictions))
89 print(confusion_matrix(Y_validation, predictions))
90 print(classification_report(Y_validation, predictions))

A. Source Code 25

A.2 Generated Function Based C Code

1 //∗∗∗
2 //
3 // This file was generated using the Weka to C converter made by Lorenz Graf.
4 //
5 //∗∗
6
7 #include "msp.h"
8
9 int N6635884e0(double i[]);

10 int N4cf3e16a1(double i[]);
11 int N7c0eba942(double i[]);
12 int N2a8166703(double i[]);
13
14 int N6635884e0(double i[])
15 {
16 int p = -1;
17 if (i[3] <= 0.6)
18 {
19 p = 0;
20 }
21 else
22 {
23 p = N4cf3e16a1(i);
24 }
25 return p;
26 }
27
28 int N4cf3e16a1(double i[])
29 {
30 int p = -1;
31 if (i[3] <= 1.7)
32 {
33 p = N7c0eba942(i);
34 }
35 else
36 {
37 p = 2;
38 }
39 return p;
40 }
41
42 int N7c0eba942(double i[])
43 {
44 int p = -1;
45 if (i[2] <= 4.9)
46 {
47 p = 1;
48 }
49 else
50 {
51 p = N2a8166703(i);
52 }
53 return p;
54 }

A. Source Code 26

55
56 int N2a8166703(double i[])
57 {
58 int p = -1;
59 if (i[3] <= 1.5)
60 {
61 p = 2;
62 }
63 else
64 {
65 p = 1;
66 }
67 return p;
68 }
69
70 // Example test set (IRIS)
71 // double testSet [] = { 5.0,3.6,1.4,0.2 };
72
73 // Results :
74 // 0 − Iris−setosa
75 // 1 − Iris−versicolor
76 // 2 − Iris−virginica
77
78 void main(void)
79 {
80 // Stop watchdog timer
81 WDTCTL = WDTPW | WDTHOLD;
82
83 int result = N4cf3e16a1(testSet);
84 }

A.3 Generated Node Based C Code

1 //∗∗∗
2 //
3 // This file was generated using the Weka to C converter made by Lorenz Graf.
4 //
5 //∗∗
6
7 #include "msp.h"
8
9 struct Node

10 {
11 int param;
12 double comp;
13 int ifResult;
14 int elseResult;
15 struct Node* ifNode;
16 struct Node* elseNode;
17 };
18
19 struct Node N2a8166703 = { .param = 3, .comp = 1.5, .ifResult = 2, .elseResult = 1,

.ifNode = 0, .elseNode = 0 };
20 struct Node N7c0eba942 = { .param = 2, .comp = 4.9, .ifResult = 1, .elseResult = 0,

.ifNode = 0, .elseNode = &N2a8166703 };
21 struct Node N4cf3e16a1 = { .param = 3, .comp = 1.7, .ifResult = 0, .elseResult = 2,

A. Source Code 27

.ifNode = &N7c0eba942, .elseNode = 0 };
22 struct Node N6635884e0 = { .param = 3, .comp = 0.6, .ifResult = 0, .elseResult = 0,

.ifNode = 0, .elseNode = &N4cf3e16a1 };
23
24 int check(double i[], struct Node* node)
25 {
26 if (i[node->param] <= node->comp)
27 {
28 return node->ifResult >= 0 ? node->ifResult : check(i, node->ifNode);
29 }
30 else
31 {
32 return node->elseResult >= 0 ? node->elseResult : check(i, node->elseNode);
33 }
34 }
35
36 // Example test set (IRIS)
37 // double testSet [] = { 5.0,3.6,1.4,0.2 };
38
39 // Results :
40 // 0 − Iris−setosa
41 // 1 − Iris−versicolor
42 // 2 − Iris−virginica
43
44 void main(void)
45 {
46 // Stop watchdog timer
47 WDTCTL = WDTPW | WDTHOLD;
48
49 int result = check(testSet, &N4cf3e16a1);
50 }

References

Literature

[1] Christian Igel, Verena Heidrich-Meisner, and Tobias Glasmachers. “Shark”. Jour-
nal of Machine Learning Research 9 (2008), pp. 993–996 (cit. on p. 8).

[2] M. Lichman. UCI Machine Learning Repository. 2013. url: http://archive.ics.uci
.edu/ml (cit. on pp. 2, 12).

[3] Joseph Misiti. Awesome Machine Learning. https://github.com/josephmisiti/awes
ome-machine-learning. 2017 (cit. on p. 8).

[4] MSP432P401R SimpleLink™ Microcontroller LaunchPad™ Development Kit
(MSP-EXP432P401R) - Datasheet. SLAU597C. Revised March 2017. Texas In-
struments. Mar. 2015 (cit. on pp. 1, 10, 12).

Films and audio-visual media

[5] Boost. Boost C++ Libraries. Version 1.64. Mar. 17, 2017. url: http://www.boos
t.org/ (cit. on p. 8).

[6] CMake. CMake GUI. Version 3.8.0. Mar. 17, 2017. url: https://cmake.org/ (cit.
on p. 8).

[7] Ian H. Witten Eibe Frank Mark A. Hall. The WEKA Workbench. http://www.cs
.waikato.ac.nz/ml/weka/. Version 3.8. 2017 (cit. on pp. 2, 12).

[8] Texas Instruments. Code Composer Studio. Version 7.1.0. Mar. 17, 2017. url: ht
tp://www.ti.com/tool/CCSTUDIO (cit. on pp. 1, 20).

Online sources

[9] Anaconda Software Distribution. Version 4.3.1. Continuum Analytics. url: https
://continuum.io (visited on 05/28/2017) (cit. on p. 2).

[10] Jason Brownlee. Your First Machine Learning Project in Python Step-By-Step.
url: http://machinelearningmastery.com/machine-learning-in-python-step-by-step
/ (visited on 05/28/2017) (cit. on p. 3).

[11] Daniel Fingers. ID3 Algorithm Implementation in C. url: http://id3alg.altervista
.org/ (visited on 05/28/2017) (cit. on p. 10).

28

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/josephmisiti/awesome-machine-learning
https://github.com/josephmisiti/awesome-machine-learning
http://www.boost.org/
http://www.boost.org/
https://cmake.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.ti.com/tool/CCSTUDIO
http://www.ti.com/tool/CCSTUDIO
https://continuum.io
https://continuum.io
http://machinelearningmastery.com/machine-learning-in-python-step-by-step/
http://machinelearningmastery.com/machine-learning-in-python-step-by-step/
http://id3alg.altervista.org/
http://id3alg.altervista.org/

References 29

[12] The ID3 Algorithm. Herbert Wertheim College of Engineering. url: https://ww
w.cise.ufl.edu/∼ddd/cap6635/Fall-97/Short-papers/2.htm (visited on 05/28/2017)
(cit. on p. 11).

https://www.cise.ufl.edu/~ddd/cap6635/Fall-97/Short-papers/2.htm
https://www.cise.ufl.edu/~ddd/cap6635/Fall-97/Short-papers/2.htm

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Problem statement
	Outline

	Machine Learning Basics
	Classification
	Iris
	Anaconda

	C++/C Machine Learning Libraries
	Shark - Machine Learning Library
	Alternative Approach

	Decision Tree ID3
	Functionality
	Implementation
	Conclusion

	Decision Tree J48
	Weka
	Preprocess Setup
	Classification

	Process Generated Tree
	W2C Converter
	Structure
	Node
	Main

	W2C Converter Usage
	Function Based C Code
	Node Based C Code
	Additional Features
	MSP432 Ready
	Result Table

	Classification on MCU
	Code Composer Studio
	Project Setup
	Configure Project
	Implementing C Code
	Classification Data

	Evaluating Results

	Conclusion
	Source Code
	Python Analytics Code
	Generated Function Based C Code
	Generated Node Based C Code

	References
	Literature
	Films and audio-visual media
	Online sources

